

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

Date Received 17/04/2019

Composting Site

Report No 2605

Grade (particle size range)

mm to mm

RAM001/107/19

Grade Type

lab constituted with water

Sample Number

Certification Code

Reported By

WESTT/BGDH/2019/0001

Report Date 14/05/2019

Date Sampled

Producer's Sample Code

17/02/2019

Batch Age When Sampled

Bangladesh - Coir Block

SUMMARY ~ PAS 100 "PASS" OR "FAIL"

Parameter	Result	PAS 100 Upper Limit	Unit	Pass or Fail	Method Reference
E. coli at 44°C	<100	1000	CFU/g	Pass	BS ISO 16649-2
Salmonella spp. at 37°C	Absent	Absent	Absent or Present in 25g	Pass	BS EN ISO 6579, Schedule 2, Part II
Cadmium as Cd	0.9	1.50	mg/kg	Pass	BS EN 13650
Chromium as Cr	6.6	100.00	mg/kg	Pass	BS EN 13650
Copper as Cu ¹	8.5	200.00	mg/kg	Pass	BS EN 13650
Lead as Pb	<0.1	200.00	mg/kg	Pass	BS EN 13650
Mercury as Hg	<0.1	1.00	mg/kg	Pass	BS ISO 16772
Nickel as Ni	1.4	50.00	mg/kg	Pass	BS EN 13650
Zinc as Zn ¹	37	400.00	mg/kg	Pass	BS EN 13650
CO ₂ (Stability)	2.70	16.0	mg CO₂/g OM/d	Pass	ORG0020
Glass, Metal, Plastic & Other	0.00	0.25	% of 'air-dry' sample > 2 mm	Pass	AfOR MT PCS Issue 1, Revision 2,
Plastic	0.00	0.12	_	Pass	05/12/2012
Sharps	0.00	R		R	
Stone in "mulch"	0.28	10.0	% of 'air-dry' sample > 4 mm	Pass	
Stone in other than "mulch"	0.28	8.0		Pass	

R Refer to composter's quality policy for upper limit allocated to the compost grade and intended market / end use, and evaluate sharps result against that limit.

¹ Zinc and copper are required by plants but, similarly as with other PTEs, can be toxic to some plant species at high concentrations. Such effects are influenced by other factors, so may not necessarily occur if corresponding PTE upper limits are exceeded. Check plant response test results for any toxic effects.

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

Date Received 17/04/2019

Composting Site

2605 Report No

Grade (particle size range)

Sample Number mm to mm

RAM001/107/19

Grade Type

lab constituted with water

Reported By Report Date

Certification Code

WESTT/BGDH/2019/0001

14/05/2019

Date Sampled

17/02/2019

Batch Age When Sampled Producer's Sample Code

Bangladesh - Coir Block

WATER EXTRACTABLE NUTRIENTS 1

Parameter	As Receive	ed (fresh)	In dry n	natter	Method	Plant Signifincance	
rarameter	Result	Unit	Result	Unit	Reference		
NH ₄ -N (ammonium-N)	0.5	mg/l*	7.5	mg/kg	BS EN 13652	Primary Nutrients	
NO₃-N (nitrate-N)	0.9	mg/l	13.5	mg/kg	BS EN 13652	Primary Nutrients	
NH ₄ -N plus NO ₃ -N	1.40	mg/l	21.0	mg/kg	Calculated	Primary Nutrients	
Phosphorus as P	15.7	mg/l	236	mg/kg	BS EN 13652	Primary Nutrients	
Potassium as K	281	mg/l	4217	mg/kg	BS EN 13652	Primary Nutrients	
Calcium as Ca	35.3	mg/l	529	mg/kg	BS EN 13652	Secondary Nutrients	
Magnesium as Mg	4.2	mg/l	63.6	mg/kg	BS EN 13652	Secondary Nutrients	
Sulphur as S	6.5	mg/l	98.2	mg/kg	BS EN 13652	Secondary Nutrients	
Boron as B	<0.1	mg/l	<0.1	mg/kg	BS EN 13652	Trace Nutrients	
Copper as Cu	<0.1	mg/l	1.08	mg/kg	BS EN 13652	Trace Nutrients	
Iron as Fe	1.6	mg/l	24.5	mg/kg	BS EN 13652	Trace Nutrients	
Manganese as Mn	0.40	mg/l	6.01	mg/kg	BS EN 13652	Trace Nutrients	
Molybdenum as Mo	0.10	mg/l	1.50	mg/kg	BS EN 13652	Trace Nutrients	
Zinc as Zn	0.55	mg/l	8.25	mg/kg	BS EN 13652	Trace Nutrients	
Chloride as Cl	272	mg/l	4079	mg/kg	BS EN 13652	See Footnote 2	
Sodium as Na	44.1	mg/l	662	mg/kg	BS EN 13652	See Footnote 2	

¹ Water extractable values are a measure of nutrient concentrations immediately available to plants.

² Sodium together with chloride, influences nutrient uptake by plants and can inhibit this at high concentrations.

^{*} The QP Manager (the 'web tool') requires the test result associated with this unit.

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

Date Received 17/04/2019

Composting Site

Report No

2605

Grade (particle size range)

mm to mm

Sample Number

RAM001/107/19

Grade Type

lab constituted with water

Reported By

Certification Code

WESTT/BGDH/2019/0001 17/02/2019

Report Date

Date Sampled

14/05/2019

Batch Age When Sampled

Producer's Sample Code Bangladesh - Coir Block

TOTAL NUTRIENTS 1

Parameter	As Receive	ed (fresh)	In dry	matter	Method Reference	Plant Signifincance
	Result	Unit	Result	Unit	_	Tiant Significance
Nitrogen as N	597	mg/l	8950	mg/kg	Dumas, BS EN 13654-2 ²	Primary Nutrients
Nitrogen as N	0.17	% m/m	0.90	% m/m	Dumas, BS EN 13654-2 ²	Primary Nutrients
Phosphorus as P	31.1	mg/l	466	mg/kg	BS EN 13650	Primary Nutrients
Phosphorus as P	<0.1	% m/m	<0.1	% m/m*	BS EN 13650	Primary Nutrients
Potassium as K	709	mg/l	10630	mg/kg	BS EN 13650	Primary Nutrients
Potassium as K	0.21	% m/m	1.06	% m/m*	BS EN 13650	Primary Nutrients
Calcium as Ca	508	mg/l	7615	mg/kg	BS EN 13650	Secondary Nutrients
Calcium as Ca	0.15	% m/m	0.76	% m/m	BS EN 13650	Secondary Nutrients
Magnesium as Mg	139	mg/l	2085	mg/kg	BS EN 13650	Secondary Nutrients
Magnesium as Mg	<0.1	% m/m	0.21	% m/m	BS EN 13650	Secondary Nutrients
Sulphur as S	66.4	mg/l	996	mg/kg	BS EN 13650	Secondary Nutrients
Sulphur as S	<0.1	% m/m	<0.1	% m/m*	BS EN 13650	Secondary Nutrients
Boron as B	0.6	mg/l	9.4	mg/kg	BS EN 13650	Trace Nutrients
Iron as Fe	297	mg/l	4451	mg/kg	BS EN 13650	Trace Nutrients
Manganese as Mn	4	mg/l	63	mg/kg	BS EN 13650	Trace Nutrients
Molybdenum as Mo	0.2	mg/l	2.6	mg/kg	BS EN 13650	Trace Nutrients
Sodium as Na	136	mg/l	2044	mg/kg	BS EN 13650	See Footnote 3

¹ This method uses a hydrochloric- and nitric-acid extractant ("aqua regia") and approximates "total" rather than "bioavailable" concentrations of the above elements.

² Unsuitable for materials containing free ammonia because this may be lost when samples are flushed with oxygen during the procedure, e.g. if compost sample contains > 500 mg/l ammonium.

³ Together with chloride, influences nutrient uptake by plants and can inhibit this at high concentrations.

^{*} The QP Manager (the 'web tool') requires the test result associated with this unit.

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

17/04/2019 Date Received

Composting Site

Report No

2605 RAM001/107/19

Grade (particle size range)

mm to mm

Sample Number

Grade Type

lab constituted with water

Reported By

Certification Code

WESTT/BGDH/2019/0001

Report Date 14/05/2019

Date Sampled

17/02/2019

Batch Age When Sampled

Producer's Sample Code

Bangladesh - Coir Block

POTENTIALLY TOXIC ELEMENTS 1

Parameter	As Receiv	ed (fresh)	In dry r	natter	PAS100	Pass or	Method Reference	
	Result	Unit	Result	Unit	Upper Limit	Fail		
Cadmium as Cd	<0.1	mg/l	0.9	mg/kg*	1.50	Pass	BS EN 13650	
Chromium as Cr	0.4	mg/l	6.6	mg/kg*	100.00	Pass	BS EN 13650	
Copper as Cu ¹	0.6	mg/l	8.5	mg/kg*	200.00	Pass	BS EN 13650	
Lead as Pb	<0.1	mg/l	<0.1	mg/kg*	200.00	Pass	BS EN 13650	
Mercury as Hg	<0.1	mg/l	<0.1	mg/kg*	1.00	Pass	BS ISO 16772	
Molybdenum as Mo	0.2	mg/l	2.6	mg/kg	N/A	N/A	BS EN 13650	
Nickel as Ni	<0.1	mg/l	1.4	mg/kg*	50.00	Pass	BS EN 13650	
Zinc as Zn ¹	2	mg/l	37	mg/kg*	400.00	Pass	BS EN 13650	

¹ Zinc and copper are required by plants but, similarly as with other PTEs, can be toxic to some plant species at high concentrations. Such effects are influenced by other factors, so may not necessarily occur if corresponding PTE upper limits are exceeded. Check plant response test results for any toxic effects.

PHYSICO-CHEMICAL PROPERTIES

Parameter	As Rece	eived (fresh)	In dry	matter	Method Reference
- didilicte.	Result	Unit	Result	Unit	
Bulk Density ¹	342	g/ *	67	g/l	BS EN 13040
Dry Matter	19.5	% m/m	N/A		BS EN 13040
Moisture	275	g/l	N/A		BS EN 13040
Moisture	80.5	% m/m*	N/A		BS EN 13040
Organic Matter (Loss On Ignition)	98.0	% m/m	89.7	% m/m*	BS EN 13039
Organic Carbon (LOI ÷ 1.72)	57.0	% m/m	52.2	% m/m*	Calculated
рН	6.97	N/A*	N/A		BS EN 13037
Electrical Conductivity	274	μS/cm@25°C	N/A		BS EN 13038
Electrical Conductivity	27.4	mS/m @ 25°C	N/A		BS EN 13038

¹ Bulk density in dry matter is termed 'Dry Weight Density' and expressed in (g/l). DWD = fresh bulk density (g/l) - volumetric moisture content (g/

Alliance Technical Laboratories Limited

^{*} The QP Manager (the 'web tool') requires the test result associated with this unit.

² 'The Fertilisers (Sampling and Analysis) Regulations 1996' Schedule 2, Part II Section 6 - 'Determination of the neutralising value of liming materials.' Method adaptation: the stage of passing the sample through a 1 mm sieve is omitted and results are expressed as % by weight of CaO on the undried sample, as received.

^{*} The QP Manager (the 'web tool') requires the test result associated with this unit.

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

Date Received 17/04/2019

Composting Site

Report No

2605

Grade (particle size range)

mm to mm

Sample Number

RAM001/107/19

Grade Type

Date Sampled

Reported By

Certification Code

lab constituted with water WESTT/BGDH/2019/0001

17/02/2019

Report Date

14/05/2019

Batch Age When Sampled

Producer's Sample Code

Bangladesh - Coir Block

PATHOGENS

Parameter		As Received (fres	Pass or Fail	Method Reference	
	Result	PAS100 Upper Limit	Unit		
E. coli at 44°C	<100	1000	CFU/g	Pass	BS ISO 16649-2
Salmonella spp. at 37°C	Absent	Absent	Absent or Present in 25g	Pass	BS EN ISO 6579, Schedule 2, Part II

STABILITY / MATURITY

Parameter		As Received (free	Pass or F	ail Method Reference	
- drameter	Result	PAS100 Upper Limit	Unit		
Carbon Dioxide (evolution rate)	2.70	16	mg CO₂ / g organi matter / day	c Pass	ORG0020
Proportion of particles < 20 mm	100	N/A	% g/g	N/A	ORG0020
Parameter	As Re	ceived (fresh)	In Dry Mat	ter [Method Reference
raiailietei	Result	Unit	Result	Unit	
NH₄-N : NO₃-N (ratio)	0.56	:1	0.56	:1	Calculated
Carbon : Nitrogen (ratio)	58.4	:1	58.4	:1 (Calculated

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

Date Received 17/04/2019

Composting Site

Report No

2605

Grade (particle size range)

mm to mm

Sample Number

RAM001/107/19

Grade Type

lab constituted with water

Reported By

Certification Code

WESTT/BGDH/2019/0001

Report Date

14/05/2019

Date Sampled

17/02/2019

Batch Age When Sampled

Producer's Sample Code

Bangladesh - Coir Block

PHYSICAL CONTAMINANTS

Sieve Apertures ¹	Glass	Metal	Plastic	Other ²	Description	Total ³	Of which Sharps ⁴	Stones ⁵	Method Reference: AfOR MT PC&S ¹
mm	g	g	g	g		g	g	g	05/12/2012
31.5	0	0	0	0		0	0	0	
16.0	0	0	0	0		0	0	0	
8.0	0	0	0	0		0	0	0	
4.0	0	0	0	0		0	0	0.25	
2.0	0	0	0	0		0	0	0	
1.0	0	0	0	0		0	0	0	
Pan	0	0	0	0		0	0	0	
% of total sample > 2 mm	0.00	0.00	0.00	0.00		0.00	0.00	N/A	
% of total sample > 4 mm	N/A	N/A	N/A	N/A		N/A	N/A	0.28	
PAS 100 upper limit for "mulch"			0.12			0.25	R	10.0	
Pass or Fail			Pass			Pass	R	Pass	
PAS 100 upper limit for other than "mulch"			0.12			0.25	R	8.0	
Pass or Fail			Pass			Pass	R	Pass	

Contaminants Key - Other²

A = Paper/Card B = Fibre C = String/Twine D = Rubber E = Matting

R Refer to composter's quality policy for upper limit allocated to the compost grade and intended market / end use, and evaluate sharps result against that limit.

Alliance Technical Laboratories Limited

 $^{^{1}}$ 10 or 12.5 omitted

² Any different physical contaminant type; use key to identify or name in 'Description'

³ 'Total' is for glass, metal, plastic and 'other'. N.B.: excludes stones

⁴ Sharps > 2 mm, of any inorganic physical contaminant type (excludes woody fragments)

⁵ Stones and other consolidated mineral contaminants

ALLIANCE TECHNICAL LABORATORIES

Analytical & Consultant Chemists & Microbiologists

Laboratory approved by Renewable Energy Assurance Limited

ANALYSIS REPORT - COMPOSTED MATERIAL

Customer Information

Laboratory Information

PR Number

Date Received 17/04/2019

Composting Site

Report No

2605

Grade (particle size range)

mm to mm

Sample Number

RAM001/107/19

Grade Type

lab constituted with water

Reported By

Certification Code

WESTT/BGDH/2019/0001

Report Date 14/05/2019

Date Sampled

17/02/2019

Batch Age When Sampled Producer's Sample Code

Bangladesh - Coir Block

PARTICLE SIZE DISTRIBUTION (air-dry sample)

Sieve Apertures ¹	Sample	of which compost	Cumu	lative	Method Reference:
H. Carlotte and Ca	Retained	Retained	Retained	Passing	AfOR MT PC&S ¹
mm	g	g	%	%	05/12/2012
31.5	0.0	0.0	0.0	100.0	
16.0	0.0	0.0	0.0	100.0	
8.0	0.0	0.0	0.0	100.0	
4.0	0.7	0.0	0.0	100.0	
2.0	7.5	8.0	9.0	91.0	
1.0	28.4	28.0	40.4	59.6	
Pan	53.1	53.0	100.0	0.0	
Total	89.7	89.0			

¹ 10 or 12.5 omitted

Note: Moisture at 40° C = 37.45 % m/m